Курс: Natural Language Processing (NLP)
Что даст вам этот курс
Что такое Natural Language Processing?
Natural Language Processing (NLP, обработка естественного языка) – это направление, которое объединяет в себе лингвистику, компьютерные науки и искусственный интеллект. NLP применяет алгоритмы машинного обучения для анализа естественных языков.
Что даст вам этот курс?
Знаний, которые дают ML/DL курсы, часто оказывается недостаточно, чтобы стать специалистом в области NLP. Data Scientist'ам, которые решили заняться методами, связанными с автоматической обработкой текстов, необходимы дополнительные знания из этой области.
Данный курс представляет собой уникальное сочетание глубоких знаний из области NLP и "повседневных" практических навыков. С одной стороны, программа курса по наполненности и изучаемым темам ничуть не уступает аналогичным вузовскими курсам. С другой стороны, в курсе, помимо теоретичечских знаний, особое внимание уделяется практическим навыкам, таким как работа с текстами на основе регулярных выражений, парсинг данных, создание телеграм-ботов. Эти темы практически не освещаются в большинстве NLP-курсов, так как считаются рутинными и техническами. При этом эти навыки необходимы всем специалистам в области NLP.
Также на курсе изучаются современные подходы и модели, которые на данный момент являются стандартом в области, но еще не успели войти в большинство программ, так как были предложены совсем недавно. Стоит отметить, что на курсе делается акцент на особенностях работы с русскоязычными моделями и данными на русском языке.
Для кого этот курс?
Курс предназначен для DS/ML-специалистов, которые, либо уже какое-то время находятся в профессии, либо недавно закончили ML/DS/DL курсы и хотят углубить знания в области NLP.
После завершения курса вы сможете:
работать с текстовыми данными;
парсить, собирать данные с сайтов из интернета;
создавать телеграм-ботов;
применять методы классического NLP для решения ML задач, связанных с текстами;
работать с нейросетевыми моделями архитектуры трансформер;
применять модели архитектуры трансформер для широкого спектра NLP задач;
решать задачу распознавания именованных сущностей;
создавать вопросно-ответные системы.
Необходимые знания
основы линейной алгебры, матанализа, теории вероятности, статистики;
классические методы машинного обучения;
Python;
желательно знание основ Deep Learning.